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ABSTRACT

Insufficient model resolution is one source of model error in numerical weather predictions. Methods for
parameterizing this error in ensemble data assimilations are explored here. Experiments were conducted
with a two-layer primitive equation model, where the assumed true state was a T127 forecast simulation.
Ensemble data assimilations were performed with the same model at T31 resolution, assimilating imperfect
observations drawn from the T127 forecast. By design, the magnitude of errors due to model truncation was
much larger than the error growth due to initial condition uncertainty, making this a stringent test of the
ability of an ensemble-based data assimilation to deal with model error. Two general methods, “covariance
inflation” and “additive error,” were considered for parameterizing the model error at the resolved scales
(T31 and larger) due to interaction with the unresolved scales (T32 to T127). Covariance inflation expanded
the background forecast members’ deviations about the ensemble mean, while additive error added spe-
cially structured noise to each ensemble member forecast before the update step.

The method of parameterizing this model error had a substantial effect on the accuracy of the ensemble
data assimilation. Covariance inflation produced ensembles with analysis errors that were no lower than the
analysis errors from three-dimensional variational (3D-Var) assimilation, and for the method to avoid filter
divergence, the assimilations had to be periodically reseeded. Covariance inflation uniformly expanded the
model spread; however, the actual growth of model errors depended on the dynamics, growing propor-
tionally more in the midlatitudes. The inappropriately uniform inflation progressively degradated the
capacity of the ensemble to span the actual forecast error.

The most accurate model-error parameterization was an additive model-error parameterization, which
reduced the error difference between 3D-Var and a near-perfect assimilation system by ~40%. In the
lowest-error simulations, additive errors were parameterized using samples of model error from a time
series of differences between T63 and T31 forecasts. Scaled samples of differences between model forecast
states separated by 24 h were also tested as additive error parameterizations, as well as scaled samples of
the T31 model state’s anomaly from the T31 model climatology. The latter two methods produced analyses
that were progressively less accurate. The decrease in accuracy was likely due to their inappropriately long
spatial correlation length scales.

1. Introduction

Ensemble-based atmospheric data assimilation tech-
niques are actively being explored as a potential re-
placement for or complement to three- or four-
dimensional variational data assimilation (3D-Var or
4D-Var; Parrish and Derber 1992; LLe Dimet and Tala-
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grand 1986; Courtier et al. 1994; Rabier et al. 1998,
2000). Data assimilation algorithms statistically adjust
prior forecasts to newly available observations to gen-
erate reduced error initial conditions suitable for nu-
merical weather predictions. As such, these methods
require error statistics of both the prior forecast (the
“background”) and the observations. Typically, error
distributions are also assumed to be normally distrib-
uted, stationary (time invariant), and perhaps homoge-
neous (spatially invariant in some sense, such as along
a latitude circle). Ensemble-based data assimilation
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methods relax some of these assumptions. In particular,
the background-error statistics are estimated from an
ensemble of forecasts and can vary in magnitude and
spatial structure depending on the flow of the day. This
permits them in theory to provide a more accurate ad-
justment of forecasts to new observations, resulting in
reduced-error analyses. Ensemble-based techniques
typically require an ensemble of ~20 to a few hundred
members of short-range forecasts and as many parallel
data assimilation updates. Hence, these methods are
computationally expensive, similar to 4D-Var. For
more background on ensemble-based methods see, for
example, Evensen (1994), Evensen and van Leeuwen
(1996), Houtekamer and Mitchell (1998), Burgers et al.
(1998), Tippett et al. (2003), Anderson (2003), Evensen
(2003), and Lorenc (2003).

In perfect-model tests, the ensemble filters produced
simulations with dramatically lower errors than were
achieved with competing methods (e.g., Hamill and
Snyder 2000, 2002; Anderson 2001). Only within the
last year or two have ensemble-based methods been
tested in realistic numerical weather prediction models
with real observations. In that case the perfect-model
assumptions must be dropped, and the forecast uncer-
tainty due to model error must be parameterized in
some fashion. Etherton and Bishop (2004) compared
variants of ensemble filters in the presence of model
error and found hybrid methods (Hamill and Snyder
2000) generally superior. Houtekamer et al. (2005)
have parameterized model deficiencies with “additive
error,” adding noise to each member of the ensemble of
background forecasts, in their case selecting noise con-
sistent in structure with a 3D-Var background-error co-
variance model. Their initial results showed that en-
semble-based assimilation methods were competitive
with but not superior to an operational 3D-Var. Whi-
taker et al. (2004, hereafter W04) tested the assimila-
tion of a sparse network of surface pressure observa-
tions for purposes of generating a long-term, historical
reanalysis. W04 found that the analysis errors from the
ensemble data assimilation were significantly less than
were achieved with a simple 3D-Var. With the sparse
observations, the form of the background-error covari-
ance model had more of an impact on the accuracy of
the assimilations (Hamill and Snyder 2000). In W04,
model errors were treated through “covariance infla-
tion,” inflating the ensemble members’ spread about
the ensemble mean. Despite the generally good results,
their data assimilations produced too little analysis
spread in data-rich regions and too much spread in
data-sparse regions.

How important is the specific method of parameter-
izing model errors in ensemble-based data assimilation
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applications? This is a question we seek to answer in
part in this study. Model error, of course, can be intro-
duced from many causes, such as imperfect parameter-
izations (Buizza et al. 1999; Palmer 2001). In this paper,
we will choose to examine only one particular aspect of
model error, the errors introduced by the truncation of
the forecast model and the resulting lack of interaction
with the smaller scales of motion. In these simulations,
the lack of interaction will be shown to result in a de-
ficiency of spread, but will not systematically bias the
ensemble very much. We will then consider whether
any of several types of additive noise can be as good or
better a parameterization of this model error than co-
variance inflation. Our simulation experiment will as-
sume that the true state is a global simulation at trian-
gular truncation T127, while the assimilation will be
carried out at T31 resolution, assimilating imperfect ob-
servations sampled from the T127 nature run. We will
test whether differences between T63 and T31 forecasts
are an effective additive model error parameterization,
and we will also test the effects of scaled differences
between forecast model states separated by 24 h and
scaled differences of random model states from the cli-
matological mean state.

Because of its computational speed and general re-
semblance to operational numerical weather prediction
(NWP) models, we will use a simple, global two-layer
primitive equation (PE) model for these ensemble data
assimilation experiments. We begin with an examina-
tion of the characteristics of the model itself and of
short-term forecast errors due to truncation (section 2).
Section 3 provides a description of the ensemble-based
data assimilation methodology and various candidate
techniques for parameterizing model error. Section 4
describes the experiment, section 5 examines the rela-
tive accuracy of the assimilations using various model-
error parameterizations and discusses these results, and
the conclusions are presented in section 6.

2. Forecast model

a. Model design

In this paper, results will be based on experiments
with a dry, global, two-layer PE model. The forecast
model was described in Zou et al. (1993, see their ap-
pendix A) and was used in Hamill et al. (2001) for
ensemble data assimilation experiments in a perfect-
model context. The model is spectral and was run at
three triangular truncations: T127, T63, and T31. The
model state vector consists of vorticity and divergence
spectral coefficients at two levels as well as coefficients
of layer thickness Aw for each layer, where 7 is the
Exner function. There is a simple, zonal wavenumber-2
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terrain with a maximum amplitude of 2000 m at 45°N-S
and 45° and 135°E, smoothly tapering to 0 m at the
Poles and equator (minimum amplitudes of —2000 m
are located at 45°N-S and 45°W and 135°E). The model
is forced by Newtonian relaxation to a prescribed in-
terface Exner function with a damping time scale of
Taiap = 20 days. A fourth-order Runge—Kutta scheme is
used for the numerical integration. The time steps are 5,
10, and 20 min for the T127, T63, and T31 resolutions.
There is V¥ = (V?)* hyperdiffusion with a 6-h e-folding
time scale for the shortest resolvable scale. The diffu-
sion acting on a given wavenumber will therefore in-
crease as the truncation is made more severe. Other
parameters are the same as in Zou et al. (1993), with
the exception that the upper-layer potential tempera-
ture is specified to be 6, = 310 K, 6, = 280 K, the model
top ziop = 1.5 X 10* m, and the lower-layer drag coef-
ficient 74,, = 4 days. The Exner function at the model
top mop = €, — (€Z10p/01) is fixed and set to a value of
~478.5 J kg ' K~'. The surface Exner function is di-
agnosed from 7, + Am, + Am;.

In the experiments that follow, the model is initial-
ized from a state of rest plus a barotropic vorticity per-
turbation and allowed to spin up for 100 days before
beginning the forecast and assimilation experiments.

b. Model- and truncation-error characteristics

Error-doubling times, as computed from the leading
Lyapunov vectors (Legras and Vautard 1996), are
shorter when the model is run at higher resolution. The
error doubling times are 3.78 days at T31, 2.16 days at
T63, and 1.88 days at T127. As in Snyder and Hamill
(2003), the leading Lyapunov vectors are closely re-
lated to the jet stream dynamics (not shown).

For all resolutions, the model exhibits upper-level
westerly jets in the midlatitudes and an easterly jet in
the Tropics (Fig. 1a). The tropical easterly jet is less
pronounced at T127 resolution while the midlatitude
westerly jets are more pronounced. Subtropical lower-
level easterly jets are slightly less pronounced at T127
(Fig. 1b). The midlatitudinal gradient of the upper-
layer thickness A (Fig. 1c) is slightly larger in magni-
tude in the T127 simulation, consistent with the stron-
ger midlatitude jet.

Figure 2 shows the kinetic energy power spectra from
nature runs at T127, T63, and T31 resolutions as a func-
tion of total wavenumber k. The spectral slope at sub-
synoptic scales is shallower than the k3 expected with
two-dimensional turbulence but steeper than the k>
of 3D turbulence. At wavenumbers around 30, the
power in the T31 nature run is damped relative to the
two higher-resolution simulations, a consequence of the
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FI1G. 1. Zonal mean statistics for nature runs at T127, T63, and
T31 resolutions. (a) Upper-layer zonal wind, (b) lower-layer zonal
wind, and (c) upper-layer Ar.

V® hyperdiffusion, which selectively damps the shortest
retained scales.

For subsequent experiments, let us assume that our
forecast system is only able to resolve scales T31 and
larger, hereafter called the “resolved scales.” The er-
rors in the resolved scales due to interaction with the
scales of motion smaller than T31, the “unresolved
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F1G. 2. Kinetic energy spectrum of nature runs at T127, T63, and
T31 resolutions. Curves for T63 and T31 are shifted by one and
two orders of magnitude, respectively.

scales,” is what constitutes the model error in these
simulations. We will assume that the “real” atmosphere
evolves according to the forecast dynamics described by
the same model, but at T127 resolution. Short-term
model error is diagnosed as follows: first, let x'*’(¢) de-
note the true model state at time ¢ at full T127 resolu-
tion. Let M'?’{:} denote the forecast model operator at
T127 resolution taking the state forward one time unit:
x'Z(t + 1) = M"¥{x'?"(¢)}. Let 7[-] denote the trunca-
tion operation of the model state to the resolved scales.
Then short-term model error is thus M 7[x'?7(r)]} —
T[x*?’(t + 1)]. That is, the model error consists of the
difference of a low-resolution forecast from a truncated
initial condition minus the truncated forecast from a
high-resolution model using a high-resolution initial
condition. This describes the short-term forecast error
in the resolved scales due to the lack of modeling of
interaction with the unresolved scales. Similar frame-
works for the diagnosis of model errors were proposed
in Cohn and Dee [1988, their Eq. (2.6¢)], Dee [1995, his
Eq. (5)], and Mitchell and Daley (1997, their section 2).

Figure 3 shows a time series of model errors com-
puted independently every 24 h over five consecutive
time periods. At the beginning of each 24-h period, the
T31 simulation was reinitialized with the truncated
T127 nature run’s state, and model error was computed
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FiG. 3. Time series of upper-layer thickness 24-h model errors.
True state of upper-layer A resolved scales overplotted in solid
lines (contour interval 50 J kg~! K™!). Geographical features are
overlaid only for perspective.

at the end of the next 24-h period. The model error
appears to have some temporally correlated features
associated with certain shortwaves. There was also a
substantial amount of error that appeared to be more
random (an examination showed that a small amount of
gravity wave noise was introduced by the truncation,
which is mostly damped after 24 h). Perturbations were
generally larger in the regions of large gradients of A,
typically in the midlatitudes.
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Model errors were initially small in scale. As the time
span of the forecast over which model errors are com-
puted was increased, the model errors grew in size and
scale (Fig. 4), peaking eventually at the synoptic scales.
After an initial transient period, these results took on
many of the characteristics of the predominantly baro-
clinic growth witnessed in Tribbia and Baumhefner
(2004) rather than the classic upscale growth associated
with a k2 spectrum discussed in Lorenz (1969) and
Leith and Kraichnan (1972). However, the errors here
do not accumulate as quickly at the planetary scales as
in the Tribbia—-Baumhefner study.

Figure 4 also shows model-error spectra when the
model was truncated at T63 resolution instead of T31.
The overall T63 24-h model-error spectrum was ap-
proximately an order of magnitude smaller, since far
more of the power of the overall spectrum was re-
solved. The peak power was at a slightly shorter wave-
number, and the errors grew faster, so the T63 model
errors were a greater fraction of the T31 model error at
120 h than at 3 h. Errors at the smallest scales of the T63
simulation appear to be supersaturated at 3 h (a vari-
ance higher than climatological variance) but were sub-
sequently damped by the diffusion. Overall, the ampli-
tude of model error due to truncation is decreased as
the resolution is increased. See also Mitchell and Daley
(1997) for further discussion of errors due to unrepre-
sented scales.

3. Ensemble data assimilation methodology

The general ensemble-based assimilation methodol-
ogy proceeds as follows. First, assume that a set of n
perturbed initial conditions is available that presumably
samples from the distribution of background (first
guess) errors. Perform n + 1 parallel data assimilation
updates using an ensemble-based assimilation algo-
rithm, updating the ensemble-mean and n perturba-
tions from the mean to the newly available observa-
tions, modeling the background-error covariances using
the ensemble. Next, make n forecasts forward to the
next data assimilation time. This step may include ad-
justing these forecast ensemble members in some man-
ner to account for model errors. Repeat the update and
forecast steps. Below, we consider the details of the
update and forecast steps.

a. Updating with the ensemble square root filter

The assimilation scheme used here has been named
the ensemble square root filter (EnSRF). A complete
description of it and the rationale for its use is provided
in Whitaker and Hamill (2002). The underlying prin-
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F1G. 4. Kinetic energy spectrum of model errors due to lack of
interactions with unresolved scales, accumulated at 3, 24, 48, 72,
96, and 120 h. (a) Spectrum of model errors when model is trun-
cated at (a) T31 and (b) T63.
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ciple is to run an ensemble of parallel forecast and data
assimilation cycles, ensuring that the ensemble-mean
analysis and the analysis-error covariance as estimated
by the ensemble are consistent with those predicted by
Kalman filter theory.

Let y°(¢) be a set of observations at time ¢ and H be
a linear operator that converts the model state to the
observation space. Let X°(¢) = [x}(¢), ..., x(¢)] be a
matrix whose column vectors are the ensemble of n
forecasts, and similarly, let X°(r) = [x°(¢), ..., x°(1)]
denote an matrix where each column vector is the en-
semble-mean forecast: x°(t) = (1/n) =, x2(¢). Let P°(¢)
be the background-error covariance matrix approxi-
mated using the sample covariance from an ensemble
of model forecasts; P°(¢) = [1/(n — 1)] [X"(r) — X ()]
[XP() — XP(1)]" [note that PP(f) is never explicitly
formed, only the matrices P°(1)H" and HP"(f)H" are
formed; see Houtekamer and Mitchell 1998, their Eqs.
(13) and (15)]. Also let R be the observation-error co-
variance matrix.

Following Whitaker and Hamill (2002), it is conve-
nient in the EnSRF to update the equations for the
ensemble mean (denoted by an overbar) and each
member’s deviation from the mean (prime) separately:

x*(1) = x"(r) + K[y°(r) — HX"(1)], (1)
x;%(1) = (1 — KH)x/ (). )

Here, the superscript a denotes the analysis, K is the
traditional Kalman gain,

K = P°()H'[HP°(H)H" + R] !, (3)

and K is a the “reduced” gain used to update deviations
from the ensemble mean. When sequentially processing
independent observations, K, K, HP"(f) and P°(r)H"
are all vectors with the same number of elements as the
model-state vector, and HP°(f)H" and R are scalars.
Thus, as first noted by J. Potter in 1964 (Maybeck 1979):

- / R -t
K= |:1+ m] K. 4)

The quantity multiplying K in Eq. (4) is a scalar be-
tween 0 and 1. This means that, in order to obtain the
analysis-error covariance consistent with the Kalman
filter, one updates deviations from the ensemble mean
using a modified Kalman gain that is reduced in mag-
nitude relative to the traditional Kalman gain. Devia-
tions from the mean are thus reduced less in the analy-
sis using K than they would be using K. For more de-
tails, see Whitaker and Hamill (2002) and Lawson and
Hansen (2004).

To improve the modeling of background-error cova-
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riances, the covariances estimated from the ensemble
are subject to modification by “localization” (e.g.,
Houtekamer and Mitchell 2001; Hamill et al. 2001;
Mitchell et al. 2002; Lorenc 2003). The Kalman gain in
(3) is replaced by a modified gain

K = [ps > P’()JH {H[ps - P’()JH" + R} "',  (5)

where the operation pg © in (5) denotes a Schur product
(an element-by-element multiplication) of a correlation
matrix pg having local support with the covariance
model generated by the ensemble. Again, [pg © P°(f)] is
never explicitly formed [see Houtekamer and Mitchell
(2001), their Egs. (5) and (6)].

b. Generating background forecasts

The other necessary part of the data assimilation
cycle is the propagation of the forecast ensemble for-
ward in time with the full, nonlinear forecast model to
the time of the next new observations. This ensemble is
used to estimate the mean state and background-error
covariances. Unfortunately, the forecast model is not
perfect, so even if one of the ensemble members hap-
pened to have a perfect initial condition, its subsequent
forecast would contain errors. In Kalman filters (e.g.,
Gelb 1974; Maybeck 1979) the background-error cova-
riances are specified by propagating the analysis-error
covariances forward using the linear tangent M and its
adjoint of the fully nonlinear forecast model operator
M, with an addition of covariance Q to account for
model error:

P°(t + 1) = MP*(0)M" + Q. (6)

Here Q is assumed to be Gaussian, composed of errors
n ~ (0, Q) that are uncorrelated in time and uncorre-
lated with internal error.

The EnSRF and ensemble Kalman filter (EnKF;
Burgers et al. 1998) produce covariances similar to
those of the Kalman filter, using the ensemble of fully
nonlinear forecasts to estimate the background-error
covariances. Let X*(¢) = [X{(¢), ..., X3(f)] be an en-
semble of analyses at time 7. Let M denote the forward
model operator between time ¢ and ¢ + 1, and let
MX?(f) denote an array composed of column vectors of
ensemble-mean forecasts started from time ¢, that is,
MX() = [MX(D), . .., MX(£)], where Mx*(£) = (1/n)
S, MxA(f) = (1/n) =, xP(t + 1). Then if forecast
errors evolve linearly and the size n of the ensemble
increases, [MX*(t) — MX*()|[MX*(t) — MX*()]" =
[XP(r + 1) — X°(t + DXt + 1) — X°(t + D)]" -
MP?(r)M". This indicates that the ensemble can be
propagated forward and used to estimate the back-
ground-error covariances, minus the missing Q term in
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(6). If the forward propagator introduces systematic er-
rors, the background forecasts should be adjusted (see
Dee and Todling 2000). In the present experiment, the
systematic error was found to be negligible. The subse-
quent experiments will demonstrate the impact of pa-
rameterizing Q through two general techniques: covari-
ance inflation and/or additive errors.

With covariance inflation, ensemble members’ devia-
tions about their mean are inflated by an amount r,
slightly greater than 1.0, before the first observation is
assimilated:

X+ 1) —rxPt+1) —xP+ D] +x°¢+1). (7

Here, the operation « denotes a replacement of the
previous value of xP(¢ + 1). Application of a moderate
inflation factor has been found to improve the accuracy
of assimilations in perfect-model experiments (Hamill
et al. 2001; Whitaker and Hamill 2002) and real-data
simulations (W04). Note that inflation increases the
spread of the ensemble, but it does not change the sub-
space spanned by the ensemble. The common assump-
tion in the Kalman filter derivation is that model error
and internal error growth are uncorrelated. If indeed
the model-error projects into a substantially different
subspace than the ensemble, this parameterization may
not be effective. However, if the dynamically relevant
part of model error is the part that projects onto the
growing modes spanned by the ensemble, covariance
inflation may be effective. Another issue with covari-
ance inflation is that a single inflation factor r may not
be optimal over all parts of a model domain. Consider,
for example, a situation where observations are very
plentiful in one hemisphere and nearly nonexistent in
the other. In the data-sparse hemisphere, observations
will not reduce the spread of the ensemble as much
during the updates, and covariance inflation may lead
to an unbounded growth of ensemble variance.

Additive errors (Mitchell et al. 2002; Houtekamer et
al. 2005) may avoid some of these problems. Noise 7,
with the same dimension as the model state is added to
each ensemble member background forecast before the
update cycle starts:

X+ 1) —x(t+ 1)+, 8)

Here m; ought to sample the probability distribution of
accumulated model errors Q, that is, (nn) = Q (here
(-) denotes the expected value). Also, (x/°(t + 1)n)) =
0; that is, the model error ought to be independent of
the internal error, though the model error might still be
dependent on the model state. Unlike covariance infla-
tion, the resulting modified ensemble may well span a
somewhat different subspace than the unmodified en-
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semble. Furthermore, additive error will not arbitrarily
double its effect with double the spread, as will covari-
ance inflation.

In the subsequent section we describe tests of en-
semble assimilations with additive errors generated us-
ing three different methods. The first approach was to
sample differences between the resolved scales of
model forecasts at different resolutions. Recall that in
our experiment, the true model state was obtained from
a T127 simulation and the ensemble forecasts were con-
ducted at T31. Suppose generating a T127 simulation is
a computational impossibility, but we have the ability
to generate T63 simulations. The difference of the re-
solved scales between T63 and T31 forecasts can then
be computed: M {T[x*(1)]} — T[x*(¢t + 1)]. This time
series can be randomly sampled, and a different sample
7, can be added to each ensemble member according to
(8). In fact, what typically was added was s m,, where s
represented a scaling factor greater than 1.0. That is,
the additive error samples were inflated in size some-
what before being added to the background forecasts.

Another ad hoc approach that was tested was to add
scaled-down differences between random model states
from the forecast model climatology, that is, m, =
s[x*!(t,) — x*'], where ¢, is a random time from the time
series of the T31 nature run, x°! is the mean climato-
logical state, and again s is a scaling factor. A similar
approach was used for generating ensemble perturba-
tions by Schubert and Suarez (1989). A third additive
error approach used scaled-down short-term (24 h)
forecast tendencies: m; = s[x’!(t,) — x°'(t, — 24h)],
where again ¢, is a random time from the time series.

Figure 5 shows the spatially lagged correlations of
additive errors for upper-layer thickness generated
through these three processes, as well as the lagged
correlation of the true model errors, that is, M2 {T[x"*’
(O]} — T[x'*¥ (t + 1)]. Lower-layer thickness errors had
similar characteristics. For both Tropics and extratrop-
ics, the differences between model forecasts at T63 and
T31 resolutions produced additive errors with the
shortest correlation length scales, very similar to the
correlation length scale of the actual model error. The
length scales from 24-h forecast tendencies were sub-
stantially longer, and samples from climatology had the
longest length scales, being especially unrealistic in the
Tropics. Figure 5 also shows the correlation structure of
typical background forecasts from one of the subse-
quent ensemble data assimilation experiments (experi-
ment 5, described in section 4b). Additive errors from
differences between T63 and T31 forecasts shortened
the correlation length scale of the background errors,
while climatological additive noise lengthened it.
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F1G. 5. Spatially lagged correlation along (a) 45°N latitude and
(b) equator of Am as a function of zonal distance for various
additive error models, as well as the correlation of the background
forecast ensemble.

4. Experiment design

a. Observations, ensemble configuration, and
evaluation technique

We now describe a large number of data assimilation
experiments. In each experiment, observations of A,
were taken at a set of nearly equally spaced locations
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on a spherical geodesic grid (Fig. 6). The observations
consisted of the T127 true state plus errors drawn from
a distribution with zero mean and standard deviation of
8.75 T kg~ ! K '. Observation errors were independent
at each location and time, and observations were as-
similated every 24 h.

In all the experiments, the ensemble size was 208
members. The ensemble was initialized with random
draws from the climatology of the assimilating model.
The data assimilation proceeded over a 150-day period;
the first 50 days were discarded as a spinup period, and
error statistics were accumulated over the remaining
100 days. Aside from experiment 1, a perfect-model
simulation at T127, all the other experiments were con-
ducted at T31 resolution.

After some preliminary experimentation, the chosen
covariance localization for all experiments used the
Gaspari and Cohn (1999) compactly supported fifth-
order piecewise rational function that decayed to zero
at 5000 km. This length scale was chosen after trying
several cutoff distances in perfect-model experiments
with the T127 model (experiment 1 below).

The ensemble-mean analysis error and spread (stan-
dard deviation of the ensemble about its mean) were
measured in three norms, a globally averaged, mass-
weighted kinetic energy norm, an upper-layer thickness
norm (since the model top is fixed, this is equivalent to
a measurement of interface Exner function), and sur-

FIG. 6. Observation locations. Observations were generated glo-
bally on a spherical geodesic grid. There are 362 observation lo-
cations worldwide.
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FIG. 7. Growth of ensemble spread and ensemble-mean error in
the kinetic energy norm, taken from the perfect additive error
experiment (No. 4).

face Exner function norm. The kinetic energy norm at
a given time is
0.5

j f m(w'? + v'?) dS dL

S L

ff’n'deL
s L

Here, u’ and v’ denote the model wind components’
ensemble-mean error or spread, 7 again refers to the
model state’s Exner function, S refers to the integration
over the sphere, and L is the integration over the model
layers. The interface height norm is

9)

Fhee =

0.5

1 12
Flam, =7\ | Am7dS |

N

(10)

where Am) denotes the upper-layer Exner function
thickness ensemble-mean error or deviation from the
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mean, and A is the surface area of the earth. The sur-
face Exner function norm is

0.5

1
Mlam .o =% f (Amj + Amp)*dS |, (11)
S

where A is the lower-layer Exner function thickness
ensemble-mean error or perturbation.

Model error is a very prominent component of the
total error in these experiments, arguably more than it
is in operational ensemble forecasting (e.g., Simmons
and Hollingsworth 2002, their Fig. 6). Figure 7 exam-
ines the 100-day-average growth of ensemble forecast
spread compared to the ensemble-mean error, taken
from experiment 4, described below. Compared with
the figure from Simmons and Hollingsworth, it is ap-
parent that the growth of spread lags far behind the
ensemble-mean error, significantly more than it does in
a recent version of the European Centre for Medium-
Range Weather Forecasts (ECMWF) model.

b. Experiments

What now follows is a description of each data as-
similation experiment, summarized in Table 1.

Experiment 1, T127 perfect model, performed the en-
semble data assimilations using the EnSRF in a perfect-
model context, assimilating the T127 observations using
an ensemble of forecasts at T127 with » = 1.01 (some
covariance inflation has been found to be helpful in
perfect-model simulations; see Hamill et al. 2001; Whi-
taker and Hamill 2002). To be consistent with the rest
of the data assimilation experiments conducted at T31
resolution, the error and spread statistics were evalu-
ated only for scales T31 and larger.

Experiment 2, covariance inflation, used an EnSRF
algorithm with the model error parameterized with a
straightforward covariance inflation. Various values of

TABLE 1. Table of data assimilation experiments performed. The first column denotes the experiment number. The second column
the name of the experiment. The third column denotes the general data assimilation methodology. The fourth column indicates the
amount of covariance inflation, r. The fifth column indicates the amount of rescaling of additive error, s. The sixth column indicates the
additive error type. The seventh column indicates whether additive errors in EnSRF assimilations were subjected to a bias correction.

Expt No. Name Method r s Additive error type Bias correction?
1 T127 perfect model EnSRF 1.01 n/a n/a n/a
2 Covariance inflation EnSRF 1.08 n/a n/a n/a
3 Restarted cov inflation EnSRF 1.10 n/a n/a n/a
4 T127 additive error EnSRF n/a 1.00 T127 Yes
5 T63 additive EnSRF n/a 1.20 T63 Yes
6 T63 analogs EnSRF n/a 1.20 T63 global analogs Yes
7 24-h tendency EnSRF n/a 0.25 24-h tendency No
8 Climatology EnSRF n/a 0.25 Climatology No
9 3D-Var 3D-Var n/a 1.40 n/a n/a
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TABLE 2. Global ensemble-mean analysis error (Err) and ensemble spread (Spr), measured in kinetic energy norm (,,, units ms™'),

upper-layer Exner function thickness norm (4, units J kg!

K™"), and surface Exner function norm (4, . units J kg~' K~'). Numbers

in parentheses indicate the percentage improvement between experiment 1, T127 perfect model, and experiment 9, 3D-Var.

Expt No. Erry. Spry. Erryn, Spram, Errpn,,, SPram.,
1 3.67 3.96 5.37 5.51 1.17 0.97
2 — — (Diverged) — — —
3 5.62(7) 5.47 7.74 (15) 5.04 1.83 (—18) 231
4 4.92 (40) 4.85 7.10 (38) 6.81 1.25 (86) 0.86
5 4.93 (40) 4.81 7.14 (37) 6.62 1.28 (80) 0.82
6 4.96 (38) 4.76 7.10 (38) 6.52 1.27 (82) 0.82
7 5.08 (33) 4.18 7.21 (34) 5.53 1.45 (50) 1.14
8 5.56 (10) 5.36 7.30 (31) 5.89 1.98 (—44) 1.93
9 5.76 n/a 8.16 n/a 1.73 n/a

covariance inflation were tried, but while these meth-
ods performed well initially, all simulations had the ten-
dency over many weeks to become numerically un-
stable. For subsequent discussion, assume the covari-
ance inflation is » = 1.08, that is, perturbations were
inflated by 8% at the beginning of each assimilation
cycle.

Experiment 3, restarted covariance inflation, was a
modification of experiment 2. Since covariance infla-
tion algorithms typically outperformed 3D-Var experi-
ments (described later) for a short period of time at the
beginning of the assimilation, we considered an experi-
ment where the EnSRF was rerun in overlapping 20-
day windows (doubling the cost of the assimilations).
The first 10 days in each window were discarded as a
spinup period, and statistics were accumulated for the
remaining 10 days. Thus, the 100 days over which statistics
were accumulated represented 10 overlapping data as-
similation experiments. In this experiment, » = 1.10.

Experiment 4, T127 additive error, used additive er-
rors and no covariance inflation. In this case, additive
errors for each member were randomly drawn from a
time series of the true additive errors, found by com-
paring the T127 and T31 simulations using the proce-
dure described in section 2b. This simulation was used
as a basis for comparing how skillful other additive er-
ror parameterizations were.

Experiment 5, 763 additive, used only additive errors
randomly drawn from differences between T63 and T31
simulations (section 2b). The scaling factor s for inflat-
ing additive model-error samples was set to 1.20, cho-
sen by experimentation.

Experiment 6, 763 analogs, set s = 1.20 as in experi-
ment 5, but in this experiment nonrandom times were
selected from the time series of differences between
T63 and T31 simulations. At each data assimilation
time, we searched a 10 000-day time series of initial
conditions from the T31 simulation and found the 208
times in that time series that were the closest fit to the

observations at this time. The analogs were a somewhat
better fit to the observations, typically around 20%-—
40% closer fit than the random model states. Since
model error appeared to be highly state dependent
(Fig. 3), the hypothesis was that selecting additive
model-error samples from relatively similar states
would provide a better parameterization than from ran-
dom states.

Experiment 7, 24-h tendency, additive errors were
randomly drawn from a sample of differences between
T31 nature run model states separated by 24 h. These
additive errors were scaled by 0.25, a constant found
through experimentation to produce the lowest errors.

Experiment 8, climatology, additive errors were ran-
domly drawn from a sample of anomalies from the
model’s climatological mean state, scaled by 0.25, cho-
sen through experimentation.

Experiment 9, 3D-Var, was an experiment simulating
a three-dimensional variational analysis by updating a
single model state using a static background-error co-
variance estimate. The static background-error covari-
ances were formed from an ensemble consisting of 208
random samples of actual background error from ex-
periment 5 inflated by 40%, chosen through experi-
mentation. The same 5000-km localization of covari-
ances was used. A similar approach to simulating 3D-
Var in an ensemble filter framework was described in
Zhang and Anderson (2003) and Evensen (2003).

5. Results

Table 2 summarizes the time-averaged ensemble-
mean error and spread of the analyses. For reference,
the errors of climatology were approximately 28 m s
in the kinetic energy norm. The accuracy of the re-
solved scales from experiment 1, the T127 perfect
model, produced the lowest error in all norms. Experi-
ment 2, a straightforward application of covariance in-
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F1G. 8. Hovmoller diagrams of zonally averaged background spread of A, from the (a) T63 additive experiment, and (b)
covariance inflation experiment, here initialized with the background ensemble from the T63 additive experiment.

flation, became numerically unstable. However, if the
ensemble was regularly restarted, as it was in experi-
ment 3, then the assimilations produced analyses with
~T7%,15%, and —18% reduction in error, measured as
the fractional difference in error between 3D-Var (ex-
periment 9) and the T127 perfect model (experiment 1)
using the three norms in Egs. (9)-(11).

The T127 additive error, the T63 additive and T63
analogs experiments all had nearly the same errors.
These produced ~40%, 38%, and 86% relative reduc-
tions in error for the T63 additive experiment. Interest-
ingly, the parameterization using the T63 runs were
equally skillful in using T127 samples of the additive
error (experiment 4), indicating that the use of model
differences from T63 simulations was a highly effective
choice of parameterization. The use of closer analogs of
model error (experiment 6) did not have a noticeable
impact on assimilation accuracy.

Why was the covariance inflation experiment sub-
stantially less accurate than these additive error experi-
ments? Fig. 8a shows that the zonally averaged back-
ground spread in the T63 additive simulation reached a
quasi-equilibrium state, decreased by the update but
growing by a similar amount during the forecast and
from the addition of additive noise. In the covariance
inflation simulation, there was a continual growth of
spread in the Tropics (Fig. 8b). Why? Figure 9 shows
the zonal and time average of A, spread for the back-
ground ensemble and for the model errors due to trun-
cation. Each profile was normalized by its maximum
zonal value, shown in parentheses. The relative propor-
tion of model error to background error at the equator
is approximately half its proportion in the midlatitudes.
Hence, a covariance inflation tuned to the midlatitudes
will introduce twice as much model error at the equator
as is appropriate during each assimilation cycle.
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F1G. 9. Zonal- and time-averaged latitudinal profiles of back-
ground spread and model error of A7, normalized by the largest
average value. Magnitude of these values are in parentheses.

We can follow how the background-error covariance
model grows increasingly unrealistic in the covariance
inflation assimilation experiment. In a stable data as-
similation cycle such as the T63 additive error simula-

(a) Ensemble Mean Background Am, and K(Am,) at

=.75 —.60 —.45 -.30 -.15 .15 .3 .45 .60
Gain
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tion, the increments to layer thicknesses A, and A,
were strongly anticorrelated in this model (Fig. 10).
Hence, when an observation of Am, made a large in-
crement to A, at nearby grid points, it typically made
a large correction of similar magnitude but opposite
sign to A, so the overall increment to the surface
Exner function m,, + A7 + Am, was much smaller
(7,p 1s a constant). With uniform covariance inflation,
model errors were repeatedly overestimated in the
Tropics. Since analysis increments were related to the
background spread at the observation location, this
implied that due to the growing tropical spreads, tropi-
cal observations then began to introduce larger and
larger adjustments to the background. Increasingly,
these increments became less realistic. In this particular
model, for instance, the unrealistic increments can be
seen by examining the increments to surface Exner
function from the observations of Am,. In the T63
additive simulation, the adjustments remained small
and stable over time (Fig. 11a). In the covariance infla-
tion simulation, the ensemble lost the strong anticorre-

10 days, T63 Additive

AR

e

(b) Ensemble Mean Bockground A7T2 and K(A7T1) at

10 days, T63 Additive

FIG. 10. Upper-layer ensemble-mean background A, (solid, contours every 50 J kg~' K™!) and the Kalman gain (colors) for (a)
the upper-layer A, and (b) the adjacent lower-layer A, at time ¢ = 10 days from the T63 additive experiment.
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F1G. 11. Hovmoller diagrams of zonally averaged Kalman gain K of changes to surface Exner function Am, +
Amr, from the (a) T63 additive and (b) covariance inflation experiments.

lation between layer thicknesses, and unrealistically
large adjustments to total column thickness resulted
(Fig. 11b).

This behavior of the ensemble filter was somewhat
different than the classical “filter divergence” problem.
Here, the problem was not that the background-error
covariances were systematically underestimated so that
the observations were effectively ignored. Rather, er-
rors increased because the background-error covari-
ance model became corrupted. We conclude that a uni-
form, large covariance inflation factor to parameterize
model error is likely to cause data assimilation prob-
lems if the model error does not grow in proportion to
the background spread, as covariance inflation assumes
[see also the discussion of inflation problems for con-
vective-scale data assimilation in Snyder and Zhang
(2003) their section 6b].

Perhaps a more accurate result could have been ob-
tained had we tested more complicated inflation ap-
proaches. For example, perhaps a location-dependent

inflation factor, akin to the “mask” used in the breeding
technique of Toth and Kalnay (1997), could ameliorate
some of these problems, as might the approach of
Zhang et al. [2004, see their Eq. (5)]. Conceptually, it is
of course desirable to limit the number of tunable pa-
rameters in the data assimilation algorithm.

We next consider whether forecast accuracy varied
with the specific type of additive model-error param-
eterization. Parameterizing the model error with 24-h
tendencies and climatology produced progressively less
accurate assimilations. The 24-h tendency additive er-
rors produced analyses that were 33%, 34%, and 50%
relative improvements, while additive errors sampled
from climatology produced assimilations that were 10%
and 31% better and 44% worse in the three norms
(recall that the T63 additive experiment produced 41 %,
38%, and 85% reductions). Examining the analysis er-
ror characteristics in the Tropics versus the extratropics
(not shown), the increased error for the climatology
additive error experiment was most pronounced in the
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Tropics, where the additive errors had their most un-
realistic covariance structure (Fig. 5).

Synthesizing these results, misspecification of the
spatial structure of additive errors degraded the en-
semble data assimilation analysis accuracy. Why? The
true model errors in these simulations were relatively
small in scale. When the additive errors samples were
inappropriately large in scale, they modified the back-
ground ensemble so its perturbations were also too
large in scale. When assimilating a single observation,
the analysis increment is proportional to the back-
ground error covariance between a grid point and the
observation location. Consequently, an overly large
spatial scale of background-error covariances will cause
the observations to have an inappropriately large influ-
ence in adjusting the analysis at distances far from the
observation location, thus, decreasing analysis accu-
racy.

A characteristic seen in nearly all the ensemble simu-
lations in Table 2 is that the spread for the surface
Exner function is much less than the ensemble-mean
error, even in the perfect-model experiment. The sur-
face Exner function is not actually a state variable, but
is diagnosed from the sum of layer thicknesses. We
suspect that the larger deficiency in spread is due to
larger errors in these diagnosed cross covariances of the
state variables, for the spread deficiency was noted
even in the T127 perfect-model simulation.

6. Discussion and conclusions

In these experiments, we considered different meth-
ods for parameterizing the model error in ensemble
assimilations due to truncation of the model resolution.
Of course, model errors in full numerical weather pre-
diction models can be caused by many other factors,
such as improper parameterizations of other subgrid-
scale processes such as convection not included in this
simplified model. Our choice here was to try to under-
stand one relatively simple source of error and explore
which methods were most effective for treating it. The
experimental setup was designed to produce large
model errors, probably a larger contribution to forecast
error than occurs in current-generation numerical mod-
els.

The experiment was conducted with a two-layer
primitive equation model. The true state was a T127
forecast nature run. Ensemble data assimilations were
performed with the same model at T31 resolution, as-
similating imperfect observations drawn from the T127
forecast. Several methods were considered for param-
eterizing the model error at the resolved scales (T31
and larger) due to interaction with the unresolved
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scales (T32 to T127). “Covariance inflation” simply in-
flated the background forecast members’ deviations
about the ensemble mean. Another, “additive errors,”
added specially structured noise to each ensemble
member.

The method of parameterizing this model error had a
substantial effect on the accuracy of ensemble data as-
similations. The best additive model-error parameter-
ization was able to reduce the relative error between
3D-Var and a near-perfect assimilation system by 38%
to 82%, depending on the norm used to measure the
error. Covariance inflation produced ensembles with
analysis errors that were typically slightly less than the
analysis errors from three-dimensional variational (3D-
Var) assimilation, but in order for the method to re-
main stable, the assimilations had to be continually re-
started. An examination of the characteristics of the
covariance inflation run showed that it developed per-
turbations that produced an inaccurate model of the
background error covariances.

The most effective additive error parameterization
used samples of model error from a time series of dif-
ferences between T63 and T31 forecasts. Scaled
samples of differences between model forecast states
separated by 24 h were also tried, as well as scaled
samples of the model state’s anomaly from the model
climatology. These latter two methods of generating
additive error samples produced analyses that were less
accurate than when using differences between T63 and
T31 forecasts but more accurate than covariance infla-
tion. Differences between T63 and T31 forecasts pro-
duced an additive error parameterization with a length
scale very similar to the true model-error length scale,
while the scaled 24-h forecast and deviations from cli-
matology had progressively longer length scales, indi-
cating that the correlation length scale of the additive
errors is important.

This method of parameterizing model error does not
use innovation statistics from the data assimilation, as
proposed by Dee (1995), Dee and da Silva (1998, 1999)
and tested in an ensemble filter by Mitchell and
Houtekamer (2000). Use of innovation statistics has the
concrete benefit in that model errors are estimated us-
ing independent information, the observations. The
model-error parameters may also be adaptively tuned,
increasing the magnitude of model error when the first
guess is not a good fit to the observations. A drawback
of the method is that if the structure of model errors is
complex, it may not be possible to estimate a large
number of parameters of a model-error covariance
model using this approach. Also, the method depends
on the observing network and an accurate characteriza-
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tion of the observation errors. Following the general
suggestion of Mitchell and Houtekamer (2000, 430-
431), Houtekamer et al. (2005) assume that model er-
rors resemble the more complex 3D-Var error covari-
ances. In their ensemble assimilations, they generate
scaled additive error samples that represent random
draws consistent with these covariances. The scaling
factor is adjusted to match time-averaged innovation
statistics.

Of course, in our experiments we knew a priori what
the model error was and thus could design a method of
using forecasts from models at different resolutions to
accurately simulate these model errors. In practice, the
actual model deficiencies will not be very well known.
They are likely to be an amalgamation of errors from
many sources: errors in convective parameterizations,
boundary layer parameterizations, radiation, cloud mi-
crophysics, land surface processes, parameter misesti-
mation, model truncation, and so on. However, our ap-
proach is appealing at least for its simplicity; if one has
a well-founded reason for believing that a particular
parameterization is problematic, two models with dif-
ferent parameterizations could be run and the resulting
differences used as samples of additive errors. Further,
if additive errors come from many sources, there is no
conceptual reason why multiple, independent additive
errors could not be added to each ensemble member,
one for each suspected type of model error. Perhaps an
innovation statistics approach could be incorporated as
well, adaptively changing the amount of model error
added depending on the misfit of the first guess to the
observations. Clearly, methods for parameterizing
model error are important and deserving of much more
exploration.
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